Consistent Robust Regression

نویسندگان

  • Kush Bhatia
  • Prateek Jain
  • Parameswaran Kamalaruban
  • Purushottam Kar
چکیده

We present the first efficient and provably consistent estimator for the robust regression problem. The area of robust learning and optimization has generated a significant amount of interest in the learning and statistics communities in recent years owing to its applicability in scenarios with corrupted data, as well as in handling model mis-specifications. In particular, special interest has been devoted to the fundamental problem of robust linear regression where estimators that can tolerate corruption in up to a constant fraction of the response variables are widely studied. Surprisingly however, to this date, we are not aware of a polynomial time estimator that offers a consistent estimate in the presence of dense, unbounded corruptions. In this work we present such an estimator, called CRR. This solves an open problem put forward in the work of [3]. Our consistency analysis requires a novel two-stage proof technique involving a careful analysis of the stability of ordered lists which may be of independent interest. We show that CRR not only offers consistent estimates, but is empirically far superior to several other recently proposed algorithms for the robust regression problem, including extended Lasso and the TORRENT algorithm. In comparison, CRR offers comparable or better model recovery but with runtimes that are faster by an order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017